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Abstract—This paper derives a gradient-based implementation
of maximum likelihood angle estimation for virtual planar arrays
used to sound millimeter wave channels.

I. INTRODUCTION

Precise measurement and characterization of millimeter
wave channels requires antennas capable of high angular
resolution to resolve closely spaced multipath sources. To
achieve angular resolution on the order of a few degrees these
antennas must be electrically large which is impractical for
phased array architectures at these frequencies. An alternative
approach is to synthesize a virtual aperture in space by using
an accurate mechanical positioner to move a receive antenna to
points along a sampling grid. An advantage of creating virtual
apertures is that the received signal is digitized at every spatial
sample position which enables the use of sophisticated angle
estimation algorithms such as maximum likelihood techniques.
The main contribution of this paper is a new gradient based
implementation of maximum likelihood angle estimation that
was demonstrated on virtual array data collected at 28 GHz
using a vector network analyzer.

II. OVERVIEW OF MAXIMUM LIKELIHOOD ANGLE
ESTIMATION

Consider a virtual array that responds to a single
polarization created using N spatial samples taken
with an omnidirectional antenna on a planar grid.
Assume Q narrowband sources in the far field of the
receive antenna impinge on the array from the directions
(θ0, φ0), (θ1, φ1), . . . , (θQ−1, φQ−1) in a spherical coordinate
system. The complex envelope of the signal received at the
ith virtual array element is

xi(t) =
Q−1∑
k=0

sk(t)e−jω0τi(θk,φk) + ni(t) (1)

where sk(t) denotes the signal emanating from the kth source
as observed at the first array element, ω0 is the center
frequency of the sources, τi(θk, φk) is the incremental delay
from the first array element to the ith array element for a plane
wave impinging on the array from the direction (θk, φk), and
ni(t) is additive zero-mean white measurement noise at the
ith element that is assumed to be independent across array
elements. Since the sources are narrowband, the interelement
delays of the kth signal, τi(θk, φk) for i = 0, . . . , N − 1,
correspond to incremental phase shifts as the plane wave

traverses across the virtual aperture. Thus, (1) can be rewritten
as

xi(t) =
Q−1∑
k=0

sk(t)e−j 2π
λ (mdxu+ndyv) + ni(t) (2)

where for N = NxNy , m = 0, . . . , Nx − 1 is the element
index in the x-direction, n = 0, . . . , Ny − 1 is the element
index in the y-direction, dx is the spacing between elements
in the x-direction, dy is the spacing between elements in the
y-direction, and u = sin θ cos φ, v = sin θ sinφ.

The array output vector of signals received at each array
element can be written as

x(t) =
Q−1∑
k=0

a(uk, vk)sk(t) + n(t) (3)

where x(t) = [x0(t), . . . , xN−1(t)]
T

, n(t) = [n0(t), . . . , nN−1(t)]
T

and a(uk, vk) is the N × 1 steering vector of the array in the
direction (uk, vk) given by,

a(uk, vk) = (4)[
e−j 2π

λ (mdxuk+ndyvk)
∣∣∣ 0≤m≤Nx − 1, 0≤n≤Ny − 1

]T

.

Using matrix notation yields,

x(t) = A(u,v)s(t) + n(t) (5)

where A(u,v) is the N ×Q matrix of steering vectors

A(u,v) = [a(u0, v0), . . . ,a(uQ−1, vQ−1)] (6)

and u = [u0, . . . , uQ−1]T , v = [v0, . . . , vQ−1]T ,
and s(t) is the Q× 1 vector of signals
s(t) = [s1(t) s2(t), . . . , sQ−1(t)]

T . Assume the signals
received at each array element are digitized over M time
instants t0, . . . , tM−1. The sampled measurements can be
expressed as

X = A(u,v)S + N (7)

with

X = [x(t0), . . . ,x(tM−1)]N×M (8)

N = [n(t0), . . . ,n(tM−1)]N×M

S = [s(t0), . . . , s(tM−1)]Q×M .

The objective of the maximum likelihood (ML)
angle estimator is to determine the incoming directions
(u0, v0), (u1, v1), . . . , (uQ−1, vQ−1) of the Q multipath
sources from the M array snapshots x(t0), . . . ,x(tM−1).
The underlying assumptions necessary for deriving the ML



estimator are that the number of sources Q is known or
can be estimated and that Q < N , the steering vectors
a(uk, vk) are linearly independent for k = 0, . . . , Q− 1, and
E[n(t)n(t)H ] = σ2

nI. As described in [1], the computation
of the ML angle estimator proceeds by determining the
joint probability density function of the sampled data and
subsequently the log-likelihood function that must then
be maximized with respect to the unknown angles. The
final result is that the ML estimates of the directions
(u0, v0), (u1, v1), . . . , (uQ−1, vQ−1) can be obtained by
maximizing the function

max
u,v

J(u,v) = tr[PA(u,v)R̂] (9)

where the sample covariance matrix is

R̂ =
1
M

M−1∑
k=0

x(tk)x(tk)H (10)

and PA(u,v) is the projection matrix onto the range space of
A(u,v),

PA(u,v) = A(u,v)
[
A(u,v)HA(u,v)

]−1
A(u,v)H (11)

= A(u,v)A(u,v)†,

with † used to denote the pseudoinverse.

A. Alternating Projections Algorithm

The alternating projections (AP) algorithm maximizes the
MLE cost function J(u,v) with respect to one pair of
parameters (uk, vk) while holding the other parameters fixed.
Since iterations of the AP algorithm perform a maximization
at every step, the value of J(u,v) can never decrease, so
the algorithm is guaranteed to converge to a local maximum.
Depending on the initial conditions, the local maximum may
or may not coincide with the global maximum. Since J(u,v)
will in general have many local maxima, proper initialization
is vital for the AP algorithm to converge to the global solution.

At the core of the AP algorithm is a projection matrix
decomposition described as follows. Consider two arbitrary
matrices X and Y with the same number of rows. The
projection matrix P[X,Y] onto the column space of the
augmented matrix [X,Y] is equal to

P[X,Y] = P[X,YX] (12)

where the matrix

YX = P⊥
XY = (I−PX)Y. (13)

The symbol ⊥ is used to denote the orthogonal complement
of PX. The columns of YX span the subspace orthogonal to
the projection of the range space of Y onto the range space of
X. Since the column space of YX is orthogonal to the column
space of X and their direct sum spans the column space of
[X,Y], it follows that

P[X,Y] = PX + PYX
. (14)

Applying (12) and (14) to PA(u,v) yields

PA(u,v) = P
[A(ûk,v̂k),a(uk,vk)]

(15)

= P
A(ûk,v̂k)

+ Pa(uk,vk)
A(̂uk,̂vk)

where the (Q− 1)× 1 vectors ûk and v̂k are

ûk = [u0, u1, . . . , uk−1, uk+1, . . . , uQ−1]T (16)

v̂k = [v0, v1, . . . , vk−1, vk+1, . . . , vQ−1]T

and the N × (Q− 1) matrix A(ûk, v̂k) is

A(ûk, v̂k) = (17)
[a(u0, v0), ...,a(uk−1, vk−1),a(uk+1, vk+1), ...,a(uQ−1, vQ−1)] .

Rewriting the maximization problem in (9) to search along
the kth spatial direction (uk, vk) at the (l + 1)st algorithm
iteration while holding all other directions fixed yields

u
(l+1)
k , v

(l+1)
k = arg max

uk,vk

tr[P
[A(û

(l)
k

,v̂
(l)
k

),a(uk,vk)]
R̂]. (18)

Equation (18) states that to obtain the angle estimates
u

(l+1)
k , v

(l+1)
k for the kth source at the (l + 1)st algorithm

iteration, the parameters û(l)
k , v̂(l)

k are held fixed while the
parameters uk, vk are free to vary. Applying the matrix
decomposition in (14) to (18) and ignoring the first term
in the summation since it is constant yields the equivalent
maximization problem

u
(l+1)
k , v

(l+1)
k = arg max

uk,vk

tr[Pa(uk,vk)
A(̂u(l)

k
,̂v

(l)
k

)
R̂]. (19)

Using (13) and (11) the vector a(uk, vk)
A(û

(l)
k

,v̂
(l)
k

)
can be

written as

a(uk, vk)
A(û

(l)
k

,v̂
(l)
k

)
=

[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]
a(uk, vk) (20)

=
[
I−A(û(l)

k , v̂(l)
k )A(û(l)

k , v̂(l)
k )

†
]
a(uk, vk).

Equation (20) shows that the vector a(uk, vk)
A(û

(l)
k

,v̂
(l)
k

)
is

orthogonal to the projection of a(uk, vk) onto the column
space of A(û(l)

k , v̂(l)
k ). Also by (11)

Pa(uk,vk)
A(̂u(l)

k
,̂v

(l)
k

)
= (21)

=

[
a(uk, vk)

A(û
(l)
k

,v̂
(l)
k

)

] [
a(uk, vk)

A(û
(l)
k

,v̂
(l)
k

)

]H

[
a(uk, vk)

A(û
(l)
k

,v̂
(l)
k

)

]H [
a(uk, vk)

A(û
(l)
k

,v̂
(l)
k

)

] .

Define the unit norm vector

b(l)
k ≡ b(uk, vk; û(l)

k , v̂(l)
k ) =

a(uk, vk)
A(û

(l)
k

,v̂
(l)
k

)

‖a(uk, vk)
A(û

(l)
k

,v̂
(l)
k

)
‖2

(22)

and substitute (21) into (20). By applying properties of the
trace operator including tr(AB) = tr(BA), the optimization
problem in (19) becomes

u
(l+1)
k , v

(l+1)
k = arg max

uk,vk

b(l)H

k R̂b(l)
k (23)

≡ arg max
uk,vk

J l(uk, vk).



The entire AP algorithm can now be summarized as follows,

Algorithm 1. MLE-AP Algorithm to Compute Angles of Arrival

Require: Initial or a priori angle estimates u
(0)
0 , . . . , u

(0)
Q−1

and v
(0)
0 , . . . , v

(0)
Q−1

1: Set algorithm iteration l = 1

2: Until
∣∣∣u(l+1)

k − u
(l)
k

∣∣∣2 < ε and
∣∣∣v(l+1)

k − v
(l)
k

∣∣∣2 < ε for all
k = 0, . . . , Q− 1, compute the AOA estimates for the kth
source by solving u

(l+1)
k , v

(l+1)
k = arg max

uk,vk

J l(uk, vk)

The two primary contributions of this paper described in
the next sections are a successful approach to initialize the
MLE-AP algorithm and a gradient-based method to maximize
the cost function J l(uk, vk) at each iteration.

III. GRADIENT-BASED IMPLEMENTATION OF MLE-AP
ALGORITHM

A. Derivation of Gradient Vector
In this section an analytical expression for the gradient

vector of the (l + 1)st cost function specified in (23) is derived.
To start, rewrite the cost function as

J l(uk, vk) = (24)

a(uk, vk)H
[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]H

R̂
[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]
a(uk, vk)

a(uk, vk)H
[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]
a(uk, vk)

≡ a(uk, vk)HBa(uk, vk)
a(uk, vk)HQa(uk, vk)

by substituting (20) into (23) and noting
that the idempotent and self-adjoint properties
of orthogonal projection matrices imply that[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]H [
I−P

A(û
(l)
k

,v̂
(l)
k

)

]
=

[
I−P

A(û
(l)
k

,v̂
(l)
k

)

]
.

Note that the steering vector a(uk, vk) defined in (4) can
be rewritten as the Kronecker product of two steering vectors,

a(uk, vk) =
[
e−j 2π

λ mdxuk

]T

⊗
[
e−j 2π

λ ndyvk

]T

(25)

with 0≤m≤Nx − 1 and 0≤n≤Ny − 1. Hereafter, to simplify
notation, the subscript k denoting the kth AOA source will be
dropped from the coordinates u, v. Next consider a change in
pointing direction corresponding to (δu, δv). Then,

a(u + δu, v + δv) = (26)[
e−j 2π

λ mdx(u+δu)
∣∣∣ 0≤m≤Nx − 1

]T

⊗[
e−j 2π

λ ndy(v+δv)
∣∣∣ 0≤n≤Ny − 1

]T

.

Define the diagonal matrices,

∆u = δu



0 0 0 0 0
0 2π

λ dx 0 0 0
0 0 2π

λ 2dx 0 0
...

...
...

. . .
...

0 0 0 0 2π
λ (Nx − 1)dx


(27)

= δuTx

and similarly ∆v = δvTy using dy instead of dx. Then using
the identity

∆u⊕∆v = ∆u⊗ I + I⊗∆v (28)

and the properties of the matrix exponential, the perturbed
steering vector a(u + δu, v + δv) can be written as

a(u + δu, v + δv) = e−j∆u ⊗ e−j∆va(u, v) (29)

= e−j(∆u⊕∆v)a(u, v).

At this point it is useful to clarify the overarching strategy
for computing the gradient vector of the cost function J(u, v)
in (24), where the superscript iteration index l has been
dropped for simplicity. A related approach is also described in
[2]. The desired gradient vector of J(u, v) to be computed is
defined as ∇J = [∂J/∂u ∂J/∂v]T . In terms of numerator and
denominator functions, J(u, v) = N(u,v)/D(u,v), so using the
quotient rule for differentiation yields

∂J

∂u
=

∂N
∂u D(u, v)− ∂D

∂u N(u, v)
D(u, v)2

(30)

∂J

∂v
=

∂N
∂v D(u, v)− ∂D

∂v N(u, v)
D(u, v)2

.

It is clear that to apply the quotient rule for computing
∇J it is also necessary to compute ∇N = [∂N/∂u ∂N/∂v]T

and ∇D = [∂D/∂u ∂D/∂v]T . A useful fact is that since the
numerator function N is continuously differentiable with
respect to u and v, the directional derivative N ′(p;d) of N at
the point p = [u v]T in the direction d = [δu δv]T is equal
to [3]

N ′(p;d) = ∇N(p)T d. (31)

In the case at hand, ∇N is unknown and the quantity to be
determined, but the directional derivative N ′(p;d) can also be
calculated as the derivative with respect to t of the function
GN (t) = N(p + td) evaluated at t = 0,

N ′(p;d) =
d

dt
GN (t)

∣∣∣∣
t=0

=
d

dt
N(p + td)

∣∣∣∣
t=0

. (32)

Thus ∇N can be recovered by using (32) to compute the
directional derivative N ′(p;d) and then writing the result in
a form compatible with (31) to recover the gradient vector.
The same procedure also applies to the denominator function
D(u, v) using the derivative with respect to t of the function
GD(t) = D(p + td) evaluated at t = 0.

Continuing along this tack and starting with D(u, v) yields,

GD(t) = D(u + tδu, v + tδv) = (33)

= a(u + tδu, v + tδv)HQa(u + tδu, v + tδv)

= a(u, v)Hej(∆u⊕∆v)tQe−j(∆u⊕∆v)ta(u, v)



and the desired directional derivative

D′(p;d) = ja(u, v)H [∆u⊕∆v,Q]a(u, v) (34)

= jtr
(
[∆u⊕∆v,Q]a(u, v)a(u, v)H

)
= jtr

(
[δvTy ⊕ δuTx,Q]a(u, v)a(u, v)H

)
= jtr

(
([δuTx ⊗ I,Q] + [I⊗ δvTy,Q])a(u, v)a(u, v)H

)
= j

[
tr

(
[δuTx ⊗ I,Q]a(u, v)a(u, v)H

)
+tr

(
[I⊗ δvTy,Q]a(u, v)a(u, v)H

)]
= j

[
δutr

(
[Tx ⊗ I,Q]a(u, v)a(u, v)H

)
+δvtr

(
[I⊗Ty,Q]a(u, v)a(u, v)H

)]
where the notation [A,B] denotes the Lie bracket,
[A,B] = AB−BA. Rewriting (34) in matrix form and
comparing to (31) yields

D′(p;d) = (35)[
−imag

(
tr

(
[Tx ⊗ I,Q]a(u, v)a(u, v)H

))
−imag

(
tr

(
[I⊗Ty,Q]a(u, v)a(u, v)H

)) ]T [
δu

δv

]
≡ ∇D(p)T d. (36)

Repeating the same argument for the numerator function
N(u, v) results in

N ′(p;d) = (37)[
−imag

(
tr

(
[Tx ⊗ I,B]a(u, v)a(u, v)H

))
−imag

(
tr

(
[I⊗Ty,B]a(u, v)a(u, v)H

)) ]T [
δu

δv

]
≡ ∇N(p)T d. (38)

Now the components of ∇N and ∇D are clearly available to
substitute into (30) to compute ∇J .

B. Conjugate Gradient Algorithm

The conjugate gradient algorithm for maximizing
the cost function in (23) for the kth AOA source
at the lth iteration of the MLE-AP algorithm is,

Algorithm 2. Conjugate Gradient Algorithm

Require: Initial angle estimates u0 and v0. One approach for
obtaining u0 and v0 is to compute (39) over all possible
angles and choose the peaks in the output.

1: Set the initial search direction d0 = ∇J(u0, v0)
2: Until ‖∇J(uj , vj)‖2 ≤ ε, where j denotes the conjugate

gradient iteration index, do the following:
3: Determine the step-size µj

4: Set pj+1 = pj + µjdj where pj = [uj vj ]T

5: Set gj+1 = ∇J(uj+1, vj+1)
6: Set dj+1 = gj+1 + αjdj

7: Set αj = gT
j+1(gj+1−gj)

gT
j
gj

8: Set j = j + 1

The step-size µj for the jth conjugate gradient iteration
can be set equal to a constant value small enough to
ensure algorithm convergence or it can be chosen via a
one-dimensional line search. The preferred approach is to use
Armijo’s rule. Given an initial stepsize, 0 < ρ < 1, Armijo’s

Fig. 1. Output of Spatial Matched Filter

Fig. 2. Algorithm Convergence Trajectory: Multipath Cluster 3

rule chooses the final stepsize µj to be the first value
in the sequence 1, ρ, ρ2, ρ3, . . . that satisfies the condition
J(pj + µjdj) ≥ J(pj) + µjα∇J(pj)T dj , for a fixed scalar
0 < α < 0.5. In other words, µj = ρm for some integer m.

IV. MEASURED RESULTS AND CONCLUSIONS

Since the cost function J(p) has multiple peaks it
is necessary to properly initialize the conjugate gradient
algorithm to ensure that it converges to the correct solution. A
simple approach is to compute the output of a spatial matched
filter s for all u, v directions in space as given by

s(u, v) = a(u, v)HR̂a(u, v) (39)

and then choose the largest peaks for initial angle estimates.
Figure 1 illustrates the output of the spatial matched filter
for virtual array data collected in a lab room. The white
crosses correspond to the multipath peaks detected using a
thresholding algorithm. These peaks are used to initialize
the conjugate gradient MLE algorithm. Figure 2 illustrates
the algorithm’s path to convergence for the third multipath
source. In all cases the algorithm converged within less than
40 iterations.
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